Cranial Osteogenesis and Suture Morphology in Xenopus laevis: A Unique Model System for Studying Craniofacial Development
نویسندگان
چکیده
BACKGROUND The tremendous diversity in vertebrate skull formation illustrates the range of forms and functions generated by varying genetic programs. Understanding the molecular basis for this variety may provide us with insights into mechanisms underlying human craniofacial anomalies. In this study, we provide evidence that the anuran Xenopus laevis can be developed as a simplified model system for the study of cranial ossification and suture patterning. The head structures of Xenopus undergo dramatic remodelling during metamorphosis; as a result, tadpole morphology differs greatly from the adult bony skull. Because of the extended larval period in Xenopus, the molecular basis of these alterations has not been well studied. METHODOLOGY/PRINCIPAL FINDINGS We examined late larval, metamorphosing, and post-metamorphosis froglet stages in intact and sectioned animals. Using micro-computed tomography (microCT) and tissue staining of the frontoparietal bone and surrounding cartilage, we observed that bone formation initiates from lateral ossification centers, proceeding from posterior-to-anterior. Histological analyses revealed midline abutting and posterior overlapping sutures. To determine the mechanisms underlying the large-scale cranial changes, we examined proliferation, apoptosis, and proteinase activity during remodelling of the skull roof. We found that tissue turnover during metamorphosis could be accounted for by abundant matrix metalloproteinase (MMP) activity, at least in part by MMP-1 and -13. CONCLUSION A better understanding of the dramatic transformation from cartilaginous head structures to bony skull during Xenopus metamorphosis may provide insights into tissue remodelling and regeneration in other systems. Our studies provide some new molecular insights into this process.
منابع مشابه
BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development.
Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. He...
متن کاملA review of hedgehog signaling in cranial bone development
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide...
متن کاملSerotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus.
Serotonin (5-HT) is a neuromodulator that plays many different roles in adult and embryonic life. Among the 5-HT receptors, 5-HT2B is one of the key mediators of 5-HT functions during development. We used Xenopus laevis as a model system to further investigate the role of 5-HT2B in embryogenesis, focusing on craniofacial development. By means of gene gain- and loss-of-function approaches and ti...
متن کاملPeter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis.
The Xenopus oocyte possesses a large maternal store of ribosomes, thereby uncoupling early development from the de novo ribosome biosynthesis required for cell growth. Brix domain-containing proteins, such as Peter Pan (PPan), are essential for eukaryotic ribosome biogenesis. In this study, we demonstrate that PPan is expressed maternally as well as in the eye and cranial neural crest cells (NC...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009